Dual Representation of Gaussians
Moments parameterization with mean $\mu$ and covariance matrix $\Sigma$
\[p(x) = \det(2 \pi \Sigma)^{-\frac{1}{2}} \exp(-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu))\]Canonical parameterization with information vector $\xi$ and information matrix $\Omega$
\[p(x) = \frac{\exp(-\frac{1}{2} \xi^T (\Omega^{-1})^T \xi)}{\det(2\pi \Omega^{-1})^{\frac{1}{2}}} \exp(-\frac{1}{2} x^T \Omega x + x^T \xi)\]Moments to canonical
\[\Omega = \Sigma^{-1}\] \[\xi = \Sigma^{-1} \mu\]Canonical to moments
\[\Sigma = \Omega^{-1}\] \[\mu = \Omega^{-1} \xi\]Marginalization and conditioning
Marginalization is cheap for moment parameterization whereas conditioning is cheap for canonical parameterization; Contioning is expensive for moment parameterization whereas marginalization is expensive for canonical parameterization.
Extended Inofrmation Filter (EIF) SLAM
EIF vs. EKF
- Same expressiveness as the EKF
- Prediction step is more costly, Correction step is cheaper
Literature
Extended Information Filter, Thrun et al.: “Probabilistic Robotics”, Chapter 3.5